Class Exponential

    • Constructor Detail

      • Exponential

        public Exponential()
        Constructs a exponential distribution with mean 1.0
      • Exponential

        public Exponential​(double[] parameters)
        Constructs a exponential distributionwhere parameter[0] is the mean of the distribution
        Parameters:
        parameters - A array containing the mean of the distribution, must be > 0.0
      • Exponential

        public Exponential​(double mean)
        Constructs a exponential distribution where mean is the mean of the distribution
        Parameters:
        mean - The mean of the distribution, , must be > 0.0
      • Exponential

        public Exponential​(double mean,
                           java.lang.String name)
        Constructs a exponential distribution where mean is the mean of the distribution
        Parameters:
        mean - The mean of the distribution, , must be > 0.0
        name - an optional label/name
    • Method Detail

      • setMean

        public final void setMean​(double val)
        Sets the mean parameter for the distribution
        Parameters:
        val - The mean of the distribution, must be > 0.0
      • getMean

        public final double getMean()
        Description copied from interface: MeanIfc
        Returns the mean or expected value of a distribution
        Specified by:
        getMean in interface MeanIfc
        Returns:
        double the mean or expected value for the distribution
      • getMoment3

        public final double getMoment3()
      • getMoment4

        public final double getMoment4()
      • cdf

        public final double cdf​(double x)
        Description copied from interface: CDFIfc
        Returns the F(x) = Pr{X <= x} where F represents the cumulative distribution function
        Specified by:
        cdf in interface CDFIfc
        Parameters:
        x - a double representing the upper limit
        Returns:
        a double representing the probability
      • invCDF

        public final double invCDF​(double prob)
        Description copied from interface: InverseCDFIfc
        Provides the inverse cumulative distribution function for the distribution While closed form solutions for the inverse cdf may not exist, numerical search methods can be used to solve F(X) = U.
        Specified by:
        invCDF in interface InverseCDFIfc
        Parameters:
        prob - The probability to be evaluated for the inverse, p must be [0,1] or an IllegalArgumentException is thrown
        Returns:
        The inverse cdf evaluated at the supplied probability
      • pdf

        public final double pdf​(double x)
        Description copied from interface: PDFIfc
        Returns the f(x) where f represents the probability density function for the distribution. Note this is not a probability.
        Specified by:
        pdf in interface PDFIfc
        Parameters:
        x - a double representing the value to be evaluated
        Returns:
        f(x)
      • getVariance

        public final double getVariance()
        Description copied from interface: VarianceIfc
        Returns the variance of the distribution if defined
        Specified by:
        getVariance in interface VarianceIfc
        Returns:
        double the variance of the random variable
      • getKurtosis

        public final double getKurtosis()
        Gets the kurtosis of the distribution
        Returns:
        the kurtosis
      • getSkewness

        public final double getSkewness()
        Gets the skewness of the distribution
        Returns:
        the skewness
      • setParameters

        public final void setParameters​(double[] parameters)
        Description copied from interface: ParametersIfc
        Sets the parameters
        Specified by:
        setParameters in interface ParametersIfc
        Parameters:
        parameters - an array of doubles representing the parameters
      • getParameters

        public final double[] getParameters()
        Description copied from interface: ParametersIfc
        Gets the parameters
        Specified by:
        getParameters in interface ParametersIfc
        Returns:
        Returns an array of the parameters
      • firstOrderLossFunction

        public double firstOrderLossFunction​(double x)
        Description copied from interface: FirstOrderLossFunctionIfc
        Computes the first order loss function for the function for given value of x, G1(x) = E[max(X-x,0)]
        Specified by:
        firstOrderLossFunction in interface FirstOrderLossFunctionIfc
        Parameters:
        x - The value to be evaluated
        Returns:
        The loss function value, E[max(X-x,0)]
      • secondOrderLossFunction

        public double secondOrderLossFunction​(double x)
        Description copied from interface: SecondOrderLossFunctionIfc
        Computes the 2nd order loss function for the distribution function for given value of x, G2(x) = (1/2)E[max(X-x,0)*max(X-x-1,0)]
        Specified by:
        secondOrderLossFunction in interface SecondOrderLossFunctionIfc
        Parameters:
        x - The value to be evaluated
        Returns:
        The loss function value, (1/2)E[max(X-x,0)*max(X-x-1,0)]