Exponential

Models exponentially distributed random variables This distribution is commonly use to model the time between events

Parameters

mean

The mean of the distribution, must be > 0.0

name

an optional label/name

Constructors

Link copied to clipboard
constructor(parameters: DoubleArray)

Constructs an exponential distribution where parameter0 is the mean of the distribution

constructor(mean: Double = 1.0, name: String? = null)

Properties

Link copied to clipboard
open override val kurtosis: Double = 6.0
Link copied to clipboard
open override var mean: Double

mean of the distribution must be > 0.0

Link copied to clipboard
Link copied to clipboard
Link copied to clipboard
open override val skewness: Double = 2.0
Link copied to clipboard
open override val variance: Double

Functions

Link copied to clipboard
open override fun cdf(x: Double): Double

Returns the F(x) = Pr{X <= x} where F represents the cumulative distribution function

Link copied to clipboard
open override fun domain(): Interval
Link copied to clipboard
open override fun firstOrderLossFunction(x: Double): Double

Computes the first order loss function for the function for given value of x, G1(x) = Emax(X-x,0)

Link copied to clipboard
open override fun instance(): Exponential
Link copied to clipboard
open override fun invCDF(p: Double): Double

Provides the inverse cumulative distribution function for the distribution

Link copied to clipboard
open override fun logLikelihood(x: Double): Double

Computes the natural log of the pdf function evaluated at x. Implementations may want to specify computationally efficient formulas for this function.

Link copied to clipboard
open override fun mean(): Double

Returns the mean or expected value of a distribution

Link copied to clipboard
open override fun parameters(): DoubleArray

Gets the parameters

open override fun parameters(params: DoubleArray)

Sets the parameters

Link copied to clipboard
open override fun pdf(x: Double): Double

Returns the f(x) where f represents the probability density function for the distribution. Note this is not a probability.

Link copied to clipboard
open override fun randomVariable(streamNumber: Int, streamProvider: RNStreamProviderIfc): ExponentialRV

Promises to return a random variable that uses the supplied stream number using the supplied stream provider

Link copied to clipboard
open override fun secondOrderLossFunction(x: Double): Double

Computes the 2nd order loss function for the distribution function for given value of x, G2(x) = (1/2)Emax(X-x,0)*max(X-x-1,0)

Link copied to clipboard
open override fun sumLogLikelihood(data: DoubleArray): Double

Computes the sum of the log-likelihood function evaluated at each observation in the data. Implementations may want to specify computationally efficient formulas for this function.

Link copied to clipboard
open override fun toString(): String
Link copied to clipboard
open override fun variance(): Double

Returns the variance of the distribution if defined